Resistivity and Shear Wave Velocity as a Predictive Tool of Sediment Type in Coastal Levee Foundation Soils

Association of Levee Boards of Louisiana 30th Annual Workshop

> Derek Goff¹ Juan Lorenzo¹ Koichi Hayashi²

1: Department of Geology & Geophysics, Louisiana State University, Baton Rouge, LA 2: Geometrics, San Jose, CA

1

Outline

2 Field Study – London Avenue Canal

Geotechnical Analysis – CPT & Borings

- Advantages
 - Highly detailed
 - Established empirical relationships
- Disadvantages
 - Lack of lateral control in heterogeneous environments

Geophysical Analysis

- Resistivity
 - Groundwater levels
 - Sensitive to saturation
- Shear Wave Velocity
 - Compaction differential
 - Shear modulus Stiffness
- Soil Type Identification
 - Empirical model based on Japanese soil studies (Hayashi et al. 2013)

Geophysical Analysis

- Advantages
 - Fast data collection
 - Resistivity:
 ~10 km per day
 - Shear wave velocity: ~1 km per day
 - Near continuous measurements
 - Detect lateral heterogeneities in soils
 - Deployment in urban environments

Liberty and Gribler (2014)

Foundation Soil Classification

- Soil Type Identification
 - Unified Soil Classification System (USCS)
 - Grain size
 - Plasticity distinguishes silts from clays

- Risk
 - Piping
 - Unconsolidated sands
 - Saturated soils
 - Dewatering & compaction

Geophysical Analysis

Original Model

- Statistical Approach
 - Cross-plot of resistivity and V_s
 - Polynomial approximation
 - Predict soil type distribution
- Identifies 3 Soil Types
 - Clays, sand, gravel
 - Silt is not included
- Field Investigations
 - Japan
 - Washington state

Geophysical Analysis

Modified Estimation Model

- Identify Clay, Silt, and Sand
 - Plasticity difference between silt and clay
- Vs-Resistivity Relationship
 - Identify saturated sediments

Field Setting

London Park

(Modified from Saucier, 1994)

Field Setting

Seismic, Resistivity, and Boring Logs

(Google Earth, 2014)

Field Results

Resistivity Profile

- Capacitively Coupled Resistivity
- Decrease resistivity with depth
 - Increasing saturation
 - Soil type change
 - Increase grain size, increase connected pore space

(Image from Geoplot)

Field Results

Seismic Velocity Models

Field Results

Soil Type Predictions

13

Geotechnical vs. Geophysical

Methods

Shear Wave Velocity Processing

- Common Midpoint Cross Correlation
 - CMP located between receiver pairs
 - Improves lateral resolution

(Hayashi and Suzuki, 2004)

Methods

Shear Wave Velocity Processing

¹⁶ (SeismicUnix using Park et al. 1999)

(Geopsy using Wathelet, 2004)

Conclusions

- Geophysical investigation can save time and cost by identifying low and high risk areas of a foundation study
- Soil type estimation picks up large geologic trends, such as the dipping Pine Island Beach Sand
- New model for Mississippi Delta distinguishes silt from clay and sand

Future Work & Recommendations

• Gather more geophysical data over existing geotechnical sites

Create best fit model from a coastal zone dataset

- Identify organic soils
- Compensate for changes in overburden pressure with depth

Acknowledgements

College of Science Department of Geology & Geophysics

Thank You

College of **Science Science** Department of Geology & Geophysics

Physical Properties

• Resistivity (Porosity, Fluid Saturation)

Resistive Soils	Conductive Soils
Silts	Clays
Unsaturated Sand	Saturated Sands

• Shear Wave Velocity (Stiffness, Density)

High Vs (>120 m/s)	Low Vs
Silts	Clays
Consolidated Sand	Unconsolidated Soils

Preliminary Results

Soil Type Distribution – Modified Model

Applications of Geophysical Tests

- Reconnaissance
 - Identify High Risk Areas
 - Lateral heterogeneity
 - Low Vs
- Calibrate
 - Existing geology

Samyn et al. (2013)

Resistivity Profile

Original Model Statistics

0% 20% 40% 60% 80% 100%

London Park

